136 research outputs found

    Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach

    Get PDF
    The last years have been characterized by the arising of highly distributed computing platforms composed of a heterogeneity of computing and communication resources including centralized high-performance computing architectures (e.g. clusters or large shared-memory machines), as well as multi-/many-core components also integrated into mobile nodes and network facilities. The emerging of computational paradigms such as Grid and Cloud Computing, provides potential solutions to integrate such platforms with data systems, natural phenomena simulations, knowledge discovery and decision support systems responding to a dynamic demand of remote computing and communication resources and services. In this context time-critical applications, notably emergency management systems, are composed of complex sets of application components specialized for executing specific computations, which are able to cooperate in such a way as to perform a global goal in a distributed manner. Since the last years the scientific community has been involved in facing with the programming issues of distributed systems, aimed at the definition of applications featuring an increasing complexity in the number of distributed components, in the spatial distribution and cooperation between interested parties and in their degree of heterogeneity. Over the last decade the research trend in distributed computing has been focused on a crucial objective. The wide-ranging composition of distributed platforms in terms of different classes of computing nodes and network technologies, the strong diffusion of applications that require real-time elaborations and online compute-intensive processing as in the case of emergency management systems, lead to a pronounced tendency of systems towards properties like self-managing, self-organization, self-controlling and strictly speaking adaptivity. Adaptivity implies the development, deployment, execution and management of applications that, in general, are dynamic in nature. Dynamicity concerns the number and the specific identification of cooperating components, the deployment and composition of the most suitable versions of software components on processing and networking resources and services, i.e., both the quantity and the quality of the application components to achieve the needed Quality of Service (QoS). In time-critical applications the QoS specification can dynamically vary during the execution, according to the user intentions and the Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach Gabriele Mencagli and Marco Vanneschi Department of Computer Science, University of Pisa, L. Bruno Pontecorvo, Pisa Italy 2 2 Will-be-set-by-IN-TECH information produced by sensors and services, as well as according to the monitored state and performance of networks and nodes. The general reference point for this kind of systems is the Grid paradigm which, by definition, aims to enable the access, selection and aggregation of a variety of distributed and heterogeneous resources and services. However, though notable advancements have been achieved in recent years, current Grid technology is not yet able to supply the needed software tools with the features of high adaptivity, ubiquity, proactivity, self-organization, scalability and performance, interoperability, as well as fault tolerance and security, of the emerging applications. For this reason in this chapter we will study a methodology for designing high-performance computations able to exploit the heterogeneity and dynamicity of distributed environments by expressing adaptivity and QoS-awareness directly at the application level. An effective approach needs to address issues like QoS predictability of different application configurations as well as the predictability of reconfiguration costs. Moreover adaptation strategies need to be developed assuring properties like the stability degree of a reconfiguration decision and the execution optimality (i.e. select reconfigurations accounting proper trade-offs among different QoS objectives). In this chapter we will present the basic points of a novel approach that lays the foundations for future programming model environments for time-critical applications such as emergency management systems. The organization of this chapter is the following. In Section 2 we will compare the existing research works for developing adaptive systems in critical environments, highlighting their drawbacks and inefficiencies. In Section 3, in order to clarify the application scenarios that we are considering, we will present an emergency management system in which the run-time selection of proper application configuration parameters is of great importance for meeting the desired QoS constraints. In Section 4we will describe the basic points of our approach in terms of how compute-intensive operations can be programmed, how they can be dynamically modified and how adaptation strategies can be expressed. In Section 5 our approach will be contextualize to the definition of an adaptive parallel module, which is a building block for composing complex and distributed adaptive computations. Finally in Section 6 we will describe a set of experimental results that show the viability of our approach and in Section 7 we will give the concluding remarks of this chapter

    Few-Shot Learning for Post-Earthquake Urban Damage Detection

    Get PDF
    Koukouraki, E., Vanneschi, L., & Painho, M. (2022). Few-Shot Learning for Post-Earthquake Urban Damage Detection. Remote Sensing, 14(1), 1-20. [40]. https://doi.org/10.3390/rs14010040 ------------------------------ Funding: This study was partially supported by FCT, Portugal, through funding of projects BINDER (PTDC/CCI-INF/29168/2017) and AICE DSAIPA/DS/0113/2019). E.K. would like to acknowledge the Erasmus Mundus scholarship program, for providing the context and financial support to carry out this study, through the admission to the Master of Science in Geospatial Technologies.Among natural disasters, earthquakes are recorded to have the highest rates of human loss in the past 20 years. Their unexpected nature has severe consequences on both human lives and material infrastructure, demanding urgent action to be taken. For effective emergency relief, it is necessary to gain awareness about the level of damage in the affected areas. The use of remotely sensed imagery is popular in damage assessment applications; however, it requires a considerable amount of labeled data, which are not always easy to obtain. Taking into consideration the recent developments in the fields of Machine Learning and Computer Vision, this study investigates and employs several Few-Shot Learning (FSL) strategies in order to address data insufficiency and imbalance in post-earthquake urban damage classification. While small datasets have been tested against binary classification problems, which usually divide the urban structures into collapsed and non-collapsed, the potential of limited training data in multi-class classification has not been fully explored. To tackle this gap, four models were created, following different data balancing methods, namely cost-sensitive learning, oversampling, undersampling and Prototypical Networks. After a quantitative comparison among them, the best performing model was found to be the one based on Prototypical Networks, and it was used for the creation of damage assessment maps. The contribution of this work is twofold: we show that oversampling is the most suitable data balancing method for training Deep Convolutional Neural Networks (CNN) when compared to cost-sensitive learning and undersampling, and we demonstrate the appropriateness of Prototypical Networks in the damage classification context.publishersversionpublishe

    The home-forwarding mechanism to reduce the cache coherence overhead in next-generation CMPs

    Get PDF
    On the road to computer systems able to support the requirements of exascale applications, Chip Multi-Processors (CMPs) are equipped with an ever increasing number of cores interconnected through fast on-chip networks. To exploit such new architectures, the parallel software must be able to scale almost linearly with the number of cores available. To this end, the overhead introduced by the run-time system of parallel programming frameworks and by the architecture itself must be small enough in order to enable high scalability also for very fine-grained parallel programs. An approach to reduce this overhead is to use non-conventional architectural mechanisms revealing useful when certain concurrency patterns in the running application are statically or dynamically recognized. Following this idea, this paper proposes a run-time support able to reduce the effective latency of inter-thread cooperation primitives by lowering the contention on individual caches. To achieve this goal, the new home-forwarding hardware mechanism is proposed and used by our runtime in order to reduce the amount of cache-to-cache interactions generated by the cache coherence protocol. Our ideas have been emulated on the Tilera TILEPro64 CMP, showing a significant speedup improvement in some first benchmarks

    A GP approach for precision farming

    Get PDF
    Abbona, F., Vanneschi, L., Bona, M., & Giacobini, M. (2020). A GP approach for precision farming. In 2020 IEEE Congress on Evolutionary Computation, CEC : 2020 Conference Proceedings (pp. 1-8). [9185637] (2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CEC48606.2020.9185637Livestock is increasingly treated not just as food containers, but as animals that can be susceptible to stress and diseases, affecting, therefore, the production of offspring and the performance of the farm. The breeder needs a simple and useful tool to make the best decisions for his farm, as well as being able to objectively check whether the choices and investments made have improved or worsened its performance. The amount of data is huge but often dispersive: it is therefore essential to provide the farmer with a clear and comprehensible solution, that represents an additional investment. This research proposes a genetic programming approach to predict the yearly number of weaned calves per cow of a farm, namely the measure of its performance. To investigate the efficiency of genetic programming in such a problem, a dataset composed by observations on representative Piedmontese breedings was used. The results show that the algorithm is appropriate, and can perform an implicit feature selection, highlighting important variables and leading to simple and interpretable models.authorsversionpublishe
    corecore